Comparison of the Structure and Reactivity of an Australian Algal Coal with Jordanian and Colorado Oil Shales

W. Roy. Jackson^{1,2*}, Mohammad W. Amer^{1,2}, Yi Fei^{1,2}, Marc Marshall^{1,2}, and Alan L. Chaffee^{1,2}

1 School of Chemistry, Monash University, Clayton, Victoria 3800, Australia 2 Centre for Green Chemistry, Monash University, Victoria 3800, Australia

Introduction

- There is extensive background knowledge of coal liquefaction including liquefaction of the algal coal torbanite
- Currently, there is strong interest in improving methods of extracting oil from oil shale, which is derived from algae
- Aim: to establish what relationships exist between the reactivity of torbanite and typical oil shales

What are oil shale & Torbanite?

Materials

 The torbanite studied is derived from freshwater algae living in the Permian period (250-300 million years ago)

 It comes from the Greta seam, New South Wales, Australia

• Ash yield 4.3 wt% db

Torbanite

- Elemental Analysis C, 82.6%, H, 10.6%, N, 0.8%, S, 0.1% O, 5.8% dmmf basis
- Atomic H/C ratio 1.53
- Mainly derived from long chain alkadienes
 CH₂=CH-(CH₂)_n-CH=CH-(CH₂)₇-CH₃ n= 15,17,19

Jordanian oil shale

- The Jordanian oil shales studied are derived from marine algae living in the Maastrichtian age (65-70 million years ago)
- They come from El-Lajjun and Sultani (see map)
- Ash yield 75.8 wt% db (El-Lajjun), 72.3 wt% db (Sultani)
- Elemental Analysis C, 71.6%, H, 8.7%, N, 1.7%, Org. S, 9.8% O, 8.2% dmmf basis (El-Lajjun)
- Atomic H/C ratio 1.45 (El-Lajjun)
- Fe, 1.9 wt% db (El-Lajjun)

Colorado oil shale

 The Colorado oil shale is derived from lacustrine algae living in the Paleocene Epoch (55-65 million years ago)

 It comes from the Mahogany Layer, Green River formation, Colorado, above the water table (see diagram)

• Ash yield 73.2 wt% db

Rich and Lean Oil Shale Zones (Green River Formation)

From Cole, R. D.; Daub, G. J.; Weston, L. K., The Green River Formation in Piceance Creek and Eastern Uinta Basins Field Trip, 1995

Experimental Autoclave reactions

- Temperature 355-425°C
- Gas N₂, H₂, CO (3 MPa cold)
- Time 1-5 hours
- Charge 2.1, 4.2 g
- 27 ml Autoclave
- Heat up time 2-4 min
- Analysis- ¹H NMR & GC-MS for CH₂Cl₂ solubles

Results

Reactions of Torbanite

T (°C)	Gas	Asphaltene	Oil+H2O
N ₂		0.4	5.9
355 -	H ₂	0.3	3.2
200	N ₂	1.1	13.5
390	H ₂	1.3	12.7
125	N ₂	12.6	72.4
423	H ₂	13.8	70.3

Reaction for 1 hour, HC gases + $CO_2 < 5\%$

Homogeneous structure leads to dramatic changes in reactivity with temperature

Reactions of Jordanian oil shales

T (°C)	Reactant	Gas	Asphaltene	Oil+H2O
	El-Lajjun	N_2	26.8	33.8
255		H ₂	30.0	38.3
555	Sultani	N_2	19.9	47.1
	Sultain	H ₂	2.3	46.6
390	El-Lajjun	N_2	18.4	57.9
		H_2	9.2	74.7
	Sultani	N ₂	10.1	64.3
		H ₂	7.8	59.7
425 -	El-Lajjun	N_2	4.9	62.8
		H ₂	6.1	72.2
	Sultani	N ₂	2.8	74.0
		H ₂	4.3	79.0

Reaction for 1 hour, CO₂ < 2%, little inorganic carbonate decomposition

• H₂ results usually better; maybe due to Fe catalysis

• Asphaltene to oil ratio drops significantly between 355 & 390°C

Extraction and reactions of El-Lajjun shale kerogen

- Kerogen isolated by successive extraction with 50% NaOH at 160°C followed by 5M HCl and then H₂O at room temperature
- Reaction at 390°C

Gas	Asphaltene	Oil+H2O
N_2	15.4	50.4
H_2	14.2	46.7

- Conversion for N_2 reaction similar to shale but for H_2 reaction less than for shale
 - Is this due to removal of Fe during kerogen extraction?

Reactions of Colorado oil shale

T (°C)	Gas	Asphaltene	Oil+H2O
N ₂		2.3	10.8
355 -	H ₂	0.6	12.7
200	N ₂	18.5	31.1
590	H ₂	-	-
425	N ₂	11.9	46.3
423	H ₂	13.8	55.4

Reaction for 1 hour, CO₂ yields 2-4%

H₂ results usually better
 Significantly less reactive than Jordanian shales

Comparison of Reactivity

Reaction for 1 hour, gas N₂, hexane soluble

• Sultani>El-Lajjun>Colorado

Elemental analysis of CH₂Cl₂ soluble material

Chala	ass Chargo	С	Η	Ν	S	O (by diff.)	at H/C ratio
Slidle	gas clidige	wt%					
El-Lajjun	H ₂	79.3	9.3	1.4	6.5	3.5	1.40
Sultani	H ₂	81.0	10.5	1.3	3.7	3.5	1.54
Colorado 10H-C, 1440-5'	CO	82.4	10.3	2.6	<0.3	4.6	1.50
Colorado 12H-C, 2896.15'	CO	83.4	10.5	3.0	<0.3	3.1	1.50

Reaction for 1 hour, CH_2Cl_2 solubles. The O by diff. for Sultani is uncertain

• S content high for El-Lajjun

• The products from the two Colorado oil shale are similar

¹H NMR of CH₂Cl₂ soluble material

Reractant	Τ°C	H _{ar}	H_{α}	H_{β}	Η _γ
El-Lajjun	390	0.09	0.07	0.53	0.31
Sultani	390	0.06	0.15	0.54	0.25
Colorado 10H-C, 1440-5'	425	0.06	0.16	0.62	0.16
Torbanite	425	0.07	0.12	0.68	0.12

Reaction for 1 hour, under N₂, CH₂Cl₂ solubles H_{ar}, 6-9 ppm; H_{α}, 1.95-4.5 ppm; H_{β}, 1-1.95 ppm; H_{γ}, 0.5-1 ppm

- Low aromatic content
- High H_{β} signifying long aliphatic chains

GC-MS of CH₂Cl₂ soluble material

Reaction for 1 hour, under N₂, CH₂Cl₂ solubles

- Note close similarity between Colorado and torbanite
- Jordanian oil shales similar to each other despite difference in S content but very different to Colorado & Torbanite

Extended reaction time at 390°C

Chala	Conversion wt% dmmf			
Shale	1h	5h		
El-Lajjun	78.5	-		
El-Lajjun (355°C)	61.2	65.3		
Colorado 10H-C, 1440-5'	51.1	72.0		
Torbanite	14.8	89.3		

Reaction under N₂, CH₂Cl₂ solubles

 Torbanite and Colorado conversion increase markedly from 390-425°C and with reaction time
 El-Lajjun conversion does not increase with reaction time

Summary

- The freshwater algal coal Torbanite and lacustrine Colorado oil shale react more slowly than the marine Jordanian oil shales (El-Lajjun and Sultani)
- Products from materials of non-marine algal origin are remarkably similar even though there is a 200 million year difference in age
- The products from the Jordanian shales are more complex due in part to the large number of S compounds
- No direct correlation between organic S content of the shales and the reactivity, Sultani, with significantly less S, reacting more readily than El-Lajjun

Acknowledgments

Dr. P. J. Cassidy and Dr. M. L. Gorbaty

The Sentient Group for financial support