Influence of Water Vapor Pressure on Oil Shale Product Recovery

Earl D. Mattson and Carl D. Palmer

Energy Resource Recovery and Management Department

Colorado School of Mines Colorado Energy Research Institute 28th Oil Shale Symposium October 13-17, 2008

Background

Previous work

- Anhydrous non-isothermal evaluation
 - Fisher Assay, RockEval pyrolysis, ThermoGravimetric Analysis (TGA)
- Hydrous isothermal evaluation
- Sweep gas variation
 - 1 atm, varying temperature and sweep rate improves quantity
 - generally lighter compound
- Reaction kinetics

Objective

- Main objective
 - Develop a fundamental understanding of oil recovery from in situ oil shale production and it's environmental impact on the groundwater resource.
- Objective of this effort
 - Assess how addition of water effects the quality and quantity of products recovered from oil shale retorting processes

Experimental method

- Add known amount of water and shale
- Pre-pressurize to obtain ~2,600 psi at 350°C
- Heat to 350°C for 72 hours
- Cool ~24 hrs to ambient temperature
- Collect
 - gas
 - floating oil
 - water
 - shale

Experimental series

- Experiments conducted with
 - **0g 0%**
 - 28g ~25%
 - 56g ~50%
 - 84g ~75%
 - 101g ~99%
 - 113g saturated
 - 250g hydrous
 - 300g hydrous

Low Water Fugacity Test Design

Experimental Design

Partial pressure results

• Fairly linear relationship of oil production as a function of water added.

Submerged vs Suspended

- Submerged produces approximately 15% more liquid product.
 - Pyrolysis
 - Expulsion
 - Migration

Idaho National Laboratory

Anhydrous to Hydrous Results

- Shale exposed to steam – linear relationship with partial pressure
- Shale submerged in water – no correlation with water volume
- Shale exposed to saturated steam – linear relationship with water (???)

daho National Laboratory

Water levels during heating

- Competition between water expansion and vaporization
- Mathcad modeling

 Only over volumes of 250 ml is the water expanding significantly

daho National Laboratory

Where is the liquid water?

 Weight loss-gain of the shale suggests suspended water saturated samples may have been exposed to liquid water during testing

daho National Laboratory

Longer Term Testing

- What are the kinetics of the kerogen conversion of these tests?
 - Is three days sufficient?
 - When do the samples come to steady state?
 - How do these rates compare to those of heat transfer?
- Experimental conditions
 - 3, 7, 14 (20) day tests
 - 350°C, pre-pressurized, 4 fugacity conditions

- Liquid Oil Quantity
 - No significant changes with time

• Liquid Oil Quality in general....yes

- Water quality
 - In general....is becoming more conductive

- Gases quality
 - Greater pressure

Idaho National Laboratory

Varying composition

- Gases quality
 - More CO
 - Less CO₂ (??)

Summary

- 3-day tests
 - Oil Quantity
 - Increases with water partial pressure
 - Hydrous retorts produce the most oil
 - Potential experimental bias in saturated tests
 - Oil Quality needs more analysis
 - Gas quantity increases with water (7 day)
 - Water EC generally decreases with more water

Summary

- Long-term (3-14 day) tests
 - Oil Quantity no significant change with time
 - Oil Quality improvement with time
 - Gas overall quantity increases with time
 - more methane, decreasing hydrogen
 - increase CO, decrease CO₂ (??)
 - Water increased EC with time

Caveats

- Caution to applying these results to the field tests
 - Preliminary result
 - Need longer testing time
 - Need additional experiments
 - Need to examine constant pressure implications

