Mathematical Modeling of Oil Shale Pyrolysis

28th Oil Shale Symposium, Colorado, USA Karim Ghesmat, Sanjiv Save HATCH LTD.

Who Are We? Hatch Overview

Working**Togethe**

- Employee-owned
- Projects in more than 125 countries
- More than 10,400 professionals worldwide
- More than CAD\$50 billion of projects now under management, including oil sands projects
- Full-service EPCM company
- Consulting process and technology
- In-house engineering services for operations support
- Hatch Procurement in China
- Serving mining & metals, energy and infrastructure for 50 years
- World class systems

About Hatch

- Employee owned
 - >10,400 professionals worldwide
- More than US\$50 billion of CAPEX projects under management
- EPCM, integrated teams, project and construction management
- Serving energy, mining & metals and infrastructure for more than 55 years

Global Operations

10,400 staff – June 2008

Kerogen Composition

Kerogen

- Kerogen is a mixture of organic chemical compounds that makes up a portion of organic matter in sedimentary rocks. It is insoluble in normal organic solvents because of its large molecular weight
- Kerogen is converted to different kinds of hydrocarbon by pyrolysis. A range of different light and heavy hydrocarbons is produced during kerogen decomposition
- Kerogen is initially converted to bitumen by heating, the bitumen is in turn decomposed to different kinds of hydrocarbons.

Kerogen Composition

Table1 Kerogen Composition at different locations

Deposit	C	Н	0	S
Leningradskoye (Russia)	77.7	9.8	11.3	1.2
Timahdit (Morocco)	70.5	9.3	12.4	7.8
El-Lajjun (Jordan)	74.5	8.5	4.5	12.5
Green-River (USA)	80.9	11.4	6.9	0.8
Irati (Brazil)	68.1	10.3	17.9	3.7
Render (Australia)	63.1	7.9	28.3	0.7
Rotem (Israel)	66.9	7	15.4	10.7
Nerke (Sweden)	69.5	7.7	16.8	6

Complex Technology Chain

Issues

- Technical feasibility
 - Driven by choice of retorting process
- Commercial Viability
 - Driven by overall process integration

Integration becomes increasingly important in order to drive advantage out of Economics of Scale

Challenges

- Do we understand enough about retorting process to develop integration strategy?
 - CO₂ footprint
 - Water consumption /bbl
 - Power Consumption/bbl
- Can we model integrated operations to depict start-up shutdown and other non-steady conditions?

Oil Shale Processing

Oil Shale Extraction

 Oil shale extraction refers to the process in which kerogen is converted into synthetic crude oil through the chemical process of pyrolysis.

Oil Shale Processors

- PARAHO
- Alberta Taciuk Processor (ATP)
- Petrosix
- UTT-3000
- Ecoshale In-Capsule process

Oil Shale Pyrolysis Geometry

Geometry

Reactor

Figure 2 Oil shale particle and reactor geometries

Oil Shale Pyrolysis Reactions

Reactions:

Carbonate Decomposition

Pyrite $Pyrite \rightarrow m_1CO + m_2CO_2 + m_3SO_2 + m_4Sulphide + m_5Sulphite$ Decomposition

Working**Together**

Oil Shale Pyrolysis Governing Equations

Mass Conservation Equations

- Kerogen

$$\frac{\partial c_{kr}}{\partial t} = -k_1 c_{kr}$$

– Light HC

 $\frac{\partial c_{LHC}}{\partial t} = k_1 c_{kr} + k_{HHC} c_{HHC} + D\nabla^2 c_{LHC}$

- Carbon Dioxide
$$\frac{\partial c_{CO_2}}{\partial t} = k_{CO_2}c_B + k_5c_{caco_3} + k_6c_p + D\nabla^2 c_{CO_2}$$

Oil Shale Pyrolysis Mathematical Modeling

- Equations are made dimensionless
- Equations are solved using integration, integrating factor and integral methods
- Mathematical Equations Predicting Oil Vapor is:

Oil Shale Pyrolysis

Mathematical Modeling Results

Figure 3 Variation of kerogen concentration with time for different kinetic constants

Oil Shale Pyrolysis Mathematical Modeling Results

t = 0.2		
t = 1		
t = 1.6	 	

Figure 4 Concentration contours of CO₂ inside the particle

Oil Shale Pyrolysis Mathematical Modeling Results

Figure 5 Oil vapour production rate versus time at different particle locations

Oil Shale Pyrolysis Mathematical Modeling Results

Figure 6 Effect of Particle Size on oil concentration inside particle

Oil Shale Pyrolysis Conclusions

- Diffusion of produced oil vapors and other components inside the particle was found to influence highly the rate of oil production.
- Particle size would also play a significant role in oil production such that the smaller size, the more and faster production of oil.
- Carbonates found to be an important source of carbon dioxide production in oil shale particles.

Thank You

Global Operations

8700 staff – June 2008

(Yellow indicates regional hub)

###