The origin of sulfur in shale oils, gases and spent matter as decoded by δ³⁴S monitoring and better knowledge gained on various pyrolysis driven processes

Zeev Aizenshtat^{*1} Ward Ahmad-Said¹ and Alon Amrani^{2,1}

¹Casali Institute and Chemistry Institute The Hebrew University of Jerusalem 91904 Jerusalem Israel ²Power, Environmental, and Energy Research Center, California Institute of Technology, 738 Arrow Grand Circle, Covina, CA 91722, USA.

Main points

- The use of sulfur stable isotopes for recognition of sedimentation conditions and Diagenetic processes.
- Assimilatory and dissimilatory sources of organically bonded sulfur isotope imprint.

The formation of oil in marine sediments

δ³⁴S Changes during Catagenetic processes, thermally induced

• Thermal maturation and influence of

Open versus Closed systems.

- •The possible role of mineral matrix.
- •Application to evaluation of sulfur role In utilization of *in-situ /ex-situ* designed

Processes.

Theoretic chemical ³⁴S/³²S isotopes discrimination: -25‰

Assimilatory processes ³⁴S/³²S isotopes discrimination: up to -3%00 Dissimilatory processes ¹⁴S/³²S isotopes discrimination: 020%95tem-50%00

Data TRS discrimination

 $\delta^{34}S$

Isotopic Mixing

Graphic picture of our experiments

Polymer-S + $S_{(aq)}$

Reactant	Sulfur mole ratio	Initial	Initial	Residual	$H_2S_{(g)}$	Binary isotope	Residual organic
	reactant/organic S	reactant	organic S	brganic S		mass balance	sulfur content
	mole	□ ³⁴ S(‰)	%				
$H_2S_{(g)}$	1:3	36	19	32.1	34	32	38.5
$H_2S_{(g)}$	1:1	60	4	30.4	29.1	32	34.3
S ₈	1:1	-1.7	19	8.1	8.8	8.7	30±2

 δ^{34} S values (error<0.4‰) and wt% for isotopes mixing experiments between polysulfide cross-linked polymer (25.1 wt% S) and H₂S_(g) or S₈ at 200°C for 48h

 δ^{34} S

Maturation

Conclusions - diagenetic stages

The largest pool of sulfur in the geosphere is sulfate SO_4^{2-} marine sulfates are $\delta^{34}S_{CDT} + 20 \pm 5\%$ depending on geological era. The supply of sulfate open or closed systems determines the interstitial $\delta^{34}S$ recorded.

The main source of reduced sulfur in sediments is the SRB dissimilatory process. The bacterial process has a marked isotopes selectivity -20 to -60‰, this is kinetically recorded by the formation of pyrite depending on iron availability.

- S²⁻ and S⁰ form (pH ~8-9) polysulfides of the S_x²⁻ structure (x=3,4,5) that are the most chemically active, these in turn react with the SOM to form sulfur rich-SOM. The isotopic signature of the organic bound sulfur has a wide range relating to some parameters discussed in the papers δ^{34} S recorded for the organically bound sulfur is on average +10‰ heavier then the pyrite.
- Type II-S kerogens are formed by the secondary sulfur
 enrichment dominated by polysulfides, these reactions produce the
 poly-cross-linked-macromolecules (PCLM). The isotopic mixing
 and discrimination at each geological setting still needs further
 studies

Conclusions- catagenetic stages

- The evolved H₂S from the kerogen is always ³²S -enriched. Very small, if any, pyritic light sulfur is contributed.
- On average the H_2S released is 5‰ lighter than the original $\delta^{34}S$ of the organic matter.
- All liquids are by +5 to +8‰ heavier ³⁴S than the original kerogen.
- The residual kerogen (isolated) is somewhat Isotopically heavier.
- In comparison to the carbon isotope changes with maturation from kerogen to petroleum the proposed scheme is reversed.

Catagenesis and TSR

- The closed or open systems at the catagenesis stages (thermally controlled) transformations have a marked difference.
- TSR depends on mineral matrix, high temperatures and pH changes.
- Mixing of the various reduced species of sulfur is recorded by sulfur isotope ratio changes.
- The source of organically bonded sulfur under TSR conditions can derive from inorganic sulfur such is the case for Type I kerogens under *insitu* shale oil production.

